网由 KL-W6000 高级使用手册

— ,	网由KL-W6000 MODBUS协议	2	,
,	全双工透传间隔与数据量大小	. 7	,

北京昆仑海岸传感技术中心

一、网由 KL-W6000 MODBUS 协议

数字量输入(位寻址)(bit):同时为输入寄存器的地址 0x0000H

 0x0000H
 第1
 路数字量采集状态
 0表 0FF, 1表 0N

 0x0001H
 第2
 路数字量采集状态
 0表 0FF, 1表 0N

 0x0002H
 第3
 路数字量采集状态
 0表 0FF, 1表 0N

0 0 0

0x000FH 第 16 路数字量采集状态 0 表 0FF, 1 表 0N

数字量输出 (位寻址)(bit); 同时为输入寄存器的地址 0x0001H

0x0000H第1路数字量输出状态0表 0FF, 1表 0N0x0001H第2路数字量输出状态0表 0FF, 1表 0N0x0002H第3路数字量输出状态0表 0FF, 1表 0N

000

0x000FH 第 16 路数字量输出状态 0 表 0FF, 1 表 0N

输入寄存器 (字寻址)(int)

0x0000H 16 路数字量输入信息 (二进制的各位值与对应通道状态对应,

第一通道从最低位开始)

0x0001H 16 路数字量输出信息 (二进制的各位值与对应通道状态对应,

第一通道从最低位开始)

 0x0002H
 第 1 路数值量采集值

 0x0003H
 第 1 路 AD 原始值

000

0x0020H第 16 路数值量采集值0x0021H第 16 路 AD 原始值

保持寄存器(字寻址)(int)

0x0000H (只读) 设备序列号[低 8 位为设备地址,高 8 位为设备批号]

0x0001H 设备串口一通讯模式和波特率

0x0002H 参数预留

0x0003H~0x0004H 目的服务器 IP 地址, (16 进制形式)

 0x0005H~0x0006H
 本机 IP 地址, (16 进制形式)

 0x0007H~0x0008H
 子网掩码, (16 进制形式)

0x0009H~0x000AH 网关,(16 进制形式)

0x000BH~0x000DH 本机 MAC 地址 (16 进制形式)

 0x000EH
 参数预留

 0x000FH
 通讯端口

0x0010H 串口工作模式标志位 0, master (set) 1, slave (VSP)

0x0011H 参数预留

0x0012H 设备子地址 (即 MODBUS 中的 slave address)

0x0013H~0x001BH 参数预留

0x001CH(只读) 高8位为设备型号第8位为软件版本号

 $0x001DH^{\sim}0x0060H$

0x0061H (bit)

参数预留

参数预留

参数预留

设备操作标志 0 位: 设备复位 1 位: 恢复出

厂参数值 其他位预留

0x0062H

0x0080H + (N-1)*0x0010H

第1路数值量采集修正值(int)

0x0081H + (N-1)*0x0010H0x0082H + (N-1)*0x0010H

参数预留

0x0083H + (N-1)*0x0010H0x0084H + (N-1)*0x0010H 参数预留 参数预留

0x0085H + (N-1)*0x0010H0x0086H + (N-1)*0x0010H 第1路数值量采集工程零点(int) 4ma 第1路数值量采集工程满度(int) 20ma

0x0087H + (N-1)*0x0010H

第1路数值量采集基准零点(unsigned int) AD

零点

0x0088H + (N-1)*0x0010H

第1路数值量采集基准满度(unsigned int) AD

满度

0x0089H + (N-1)*0x0010H

参数预留 0x008AH + (N-1)*0x0010H参数预留 0x008BH + (N-1)*0x0010H参数预留

0x008CH + (N-1)*0x0010H0x008DH + (N-1)*0x0010H0x008EH + (N-1)*0x0010H

参数预留 参数预留

参数预留

0x008FH + (N-1)*0x0010H

参数预留

 $1 \le N \le 8$

 $0x0100H^{\sim}0x03FF$

参数预留

三、通讯命令:

1. Read Input Registers

Request

Header	None	
Slave Address	00^{\sim} ff	1 Byte
	(Hex)	
Function code	04	1 Byte
	(Hex)	
Starting Address	0000°fffff	2 Bytes
	(Hex)	
Quantity of Input	0001~ 007d	2 Bytes
Registers	(Hex)	
Error Check	0000~fffff	2 Bytes
(CRC)	(Hex)	
Trailer	None	

Response

Header	None		
Slave Address	00 [~] ff	(Hex)	1 Byte
Function code	04		1 Byte
	(Hex)		
Byte count	2 x	N*	1 Byte
	(Hex)		
Input Registers			N* x 2 Bytes
Error Check	0000~ffff	(Hex)	2 Bytes
Trailer	None		

^{*}N = Quantity of Input Registers

2. Write Single Coil

Request

Header	None		
Slave Address	00^{\sim} ff	(Hex)	1 Byte
Function code	05	(Hex)	1 Byte
Output Address	0000~ffff	(Hex)	2 Bytes
Output Value	0000 or	ff00	2 Bytes
	(Hex)		
Error Check	$0000^{\sim} fffff$	(Hex)	2 Bytes
(CRC)			
Trailer	None		

Response

Header	None	
Slave Address	00° ff	1 Byte
	(Hex)	
Function	05	1 Byte
	(Hex)	
Output Address	0000°fffff	2 Bytes
	(Hex)	
Output Value	0000 or ff00	2 Bytes
	(Hex)	
Error Check	0000° fffff	2 Bytes
	(Hex)	
Trailer	None	

四、基本命令和数据解析:

1. 全通道查询命令

01 04 00 00 00 22 70 13

查询命令解析:

第字	1	2	3	4	5	6	7	8
节								
内容	01	04	00	00	00	22	70	13
名称	地址	功能码	起始等	子 存器地	寄存器数量	<u>.</u>	Crc ₹	交验
			址					
意义	01	读输入	从地址	0x0000	读取 0x00	22 个数量的	Crc ₹	交验
		寄存器	的输入	寄存器	输入寄存器	客 (34 个 int		
			读取		型数据)			

返回数据:

返回数据解析:

第 字	1	2	3	4	5	6	7	8	9
节									
内容	01	04	44	00	00	00	00	04	AB
名称	地	功能	数 据	4 路开关	量状态,	1 路继	电器状	第 1	第 1
	址	码	字 节	低字节的	的前 4 位	态,低	字节的	路 模	路 模
			数	有效,其	二进制数	前1位	有效,	拟量	拟量
				分别为	1~4 路开	其二は	生制 数	高 8	低 8
				关量状态	\vec{x}	为1路	继电器	位	位
						状态			

第	10	11	12	13	14	15	0000	72	73
字节									
内容	00	02	00	00	00	02	0000	В0	CE
名称	第 1	第 1	第 2	第 2	第 2	第 1	0000	Crc 校	验
	路 AD	路 AD	路 模	路 模	路 AD	路 AD			
	原始	原始	拟量	拟量	原 始	原 始			
	值高	值低	高 8	低 8	值高	值低			
	8位	8位	位	位	8位	8位			

停止继电器命令:

01 05 00 00 00 00 CD CA

命令解析:

第 字	1	2	3	4	5	6	7	8
节								
内容	01	05	00	00	00	00	CD	CA
名称	地址	功能码	起始智	寄存器地	停止继电器	器数据命令	Crc ₹	交验
			址					
意义	01	写单个	从地址	0x0000	停止继电器	器数据命令	Crc ₹	交验
		继电器	写入					

五、CRC 校验函数算法代码:

```
unsigned int getcrc_chek_m(unsigned char *data_point,unsigned int data_length,unsigned
 int origin_data)
   {
        unsigned int crc_register,temp_data,i,j;
        crc_register=origin_data;
        for(i=0;i<data_length;i++)
          {
             crc_register^=*data_point;
             for(j=0;j<8;j++)
               {
                  temp_data=crc_register&0x0001;
                  crc_register>>=1;
                  if(temp_data){crc_register^=0xa001;}
               }
             data_point++;
          }
        return(crc_register);
   }
```

二、全双工透传间隔与数据量大小

透明传输性能和透明传输的速率、包大小、是否全双工这三者有比例关系,简单的说, 当一次传输包很大时(比如 3K)传输间隔/速率就要放慢,或采用半双工模式。否则就会产 生严重的丢包现象,当数据较短时可以加快速率。

通过调整这三个参数可以有效地将数据进行透传,为此我们进行了严密,专业的测试,数据如下,供您参考。

测试目的: 测试不同波特率下串口透传速度

测试设备: KL-W6211

测试环境: 局域网, XP 系统, 常温

测试工具: 串口配置工具, 服务器, 串口工具。

测试方法:将计算机串口和设备串口相连,模块设置为网络模式,虚拟串口工具设置 INTER6000=500,分别测试有采集和无采集时在不同波特率下,RS232 串口透明传输不丢包 的最小时间间隔,数据长度 200 字节和 3072 字节,其中加入采集命令的采集周期为 1s。

典型 200 字节的透传间隔如下。

波特率	透传方向	采集	最小时间间隔(ms)
			7次、1.41161161644(1112)
4800	全双工	无	900
	全双工	有	1000
9600	全双工	无	650
	全双工	有	1000
14400	全双工	无	700
	全双工	有	1000
19200	全双工	无	700
	全双工	有	1000
38400	全双工	无	700
	全双工	有	1000

典型 3072 字节的透传间隔如下。

波特率	透传方向	采集	最小时间间隔(s)
4800	全双工	无	11
9600	全双工	无	7
14400	全双工	无	7
19200	全双工	无	6
38400	全双工	无	5

注: 以上数据仅代表一般网络的性能,由于网络状况有所不同,您实际得到的数据可能和 上面的数据有少许误差。